Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.878
Filtrar
1.
Nature ; 627(8005): 830-838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448588

RESUMO

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Assuntos
Pulmão , Reflexo , Respiração , Mecânica Respiratória , Nervo Vago , Animais , Feminino , Masculino , Camundongos , Células Epiteliais/metabolismo , Pulmão/citologia , Pulmão/inervação , Pulmão/fisiologia , Mecanorreceptores/metabolismo , Parvalbuminas/metabolismo , Reflexo/fisiologia , Células Receptoras Sensoriais/metabolismo , Nervo Vago/fisiologia , Complacência Pulmonar/fisiologia , Mecânica Respiratória/fisiologia
2.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35365503

RESUMO

The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.


Assuntos
Gânglios Espinais , Nervo Vago , Vias Aferentes , Animais , Pulmão/inervação , Pulmão/metabolismo , Camundongos , Neurônios , Neurônios Aferentes/fisiologia , Gânglio Nodoso , Nervo Vago/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L50-L63, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755535

RESUMO

Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remain poorly understood. Here, we interrogated the cell body location and molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.


Assuntos
Pulmão/inervação , Células Receptoras Sensoriais/fisiologia , Células Epiteliais Alveolares/metabolismo , Animais , Tronco Encefálico/fisiologia , Calbindinas/metabolismo , Perfilação da Expressão Gênica , Integrases/metabolismo , Pulmão/irrigação sanguínea , Camundongos , Modelos Biológicos , Músculo Liso/fisiologia , Células Neuroendócrinas/metabolismo , Gânglio Nodoso/fisiologia , Traqueia/inervação , Nervo Vago/fisiologia
4.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R903-R911, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668438

RESUMO

Sex-related differences in respiratory modulation of sympathetic activity have been observed in rodent models of sleep apnea [intermittent hypoxia (IH)]. In light of sex disparities in the respiratory response to acute IH in humans as well as changes in respiratory modulation of muscle sympathetic nerve activity (MSNA) in clinical sleep apnea, we examined sex-related differences in respiratory modulation of MSNA following acute IH. We hypothesized that respiratory modulation of MSNA would be altered in both male and female participants after IH; however, the respiratory patterning of MSNA following IH would be sex specific. Heart rate, MSNA, and respiration were evaluated in healthy male (n = 21, 30 ± 5 yr) and female (n = 10, 28 ± 5 yr) participants during normoxic rest before and after 30 min of IH. Respiratory modulation of MSNA was assessed by fitting polynomials to cross-correlation histograms constructed between sympathetic spikes and respiration. MSNA was elevated after IH in male (20 ± 6 to 24 ± 8 bursts/min) and female (19 ± 8 to 22 ± 10 bursts/min) participants (P < 0.01). Both male and female participants exhibited respiratory modulation of MSNA (P < 0.01); however, the pattern differed by sex. After IH, modulation of MSNA within the breath was reduced in male participants (P = 0.03) but increased in female participants (P = 0.02). Both male and female adults exhibit changes in respiratory patterning of MSNA after acute IH; however, this pattern differs by sex. These data support sex disparities in respiratory modulation of MSNA and may have implications for conditions such as sleep apnea.


Assuntos
Hipóxia/fisiopatologia , Pulmão/inervação , Músculo Esquelético/inervação , Oxigênio/sangue , Mecânica Respiratória , Sistema Nervoso Simpático/fisiopatologia , Adaptação Fisiológica , Adulto , Biomarcadores/sangue , Feminino , Frequência Cardíaca , Humanos , Hipóxia/sangue , Masculino , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
5.
Inflammation ; 44(6): 2476-2485, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34453228

RESUMO

Treg/Th17 cell imbalance and inflammatory response may occur in neonatal asthma. IL-35 and BCG have inhibitory effects on inflammatory responses in diseases. However, studies on neonatal asthma after combination of the two have not been reported so far. A respiratory syncytial virus (RSV)-induced neonatal asthma model was first developed in newborn mice. Pathological sections of lung tissue of asthmatic mice were observed by HE staining. Masson staining was used to observe the lung tissue and to compare the deposition of collagen fibers under bronchial epithelium in model mice. The expression of cytokines in serum was detected by ELISA. Giemsa staining analyzed each cell in bronchoalveolar lavage fluid (BALF). Flow cytometry was used to detect the differentiation and development of Treg and Th17 subgroups in BALF. The expression levels of inflammation-related factors were detected by RT-qPCR. Western blot was used to detect the expression of JNK pathway-related proteins. Recombinant IL-35-BCG improved the pathological response of asthmatic mice; inhibited the expression of IgE in serum, neutrophils, macrophages, and eosinophils in BALF; and increased the expression of lymphocytes. In addition, recombinant IL-35-BCG significantly inhibited Th17 differentiation, promoted Treg cell differentiation, and inhibited the expression of inflammatory factors in lung tissue homogenates, thereby reducing allergic airway inflammation. This process might be achieved by inhibiting the JNK signaling pathway. Recombinant IL-35-BCG can regulate Treg/Th17 cell imbalance and inflammatory response in asthmatic newborn mice induced by RSV through JNK signaling pathway, suggesting a new path to neonatal asthma treatment.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/tratamento farmacológico , Vacina BCG/farmacologia , Interleucinas/farmacologia , Pulmão/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Asma/imunologia , Asma/metabolismo , Asma/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/imunologia , Pulmão/inervação , Pulmão/virologia , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/farmacologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/patogenicidade , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/virologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/virologia
6.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R558-R571, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405704

RESUMO

Orexin neurons are active in wakefulness and mostly silent in sleep. In adult rats and humans, orexin facilitates the hypercapnic ventilatory response but has little effect on resting ventilation. The influence of orexin on breathing in the early postnatal period, and across states of vigilance, have not been investigated. This is relevant as the orexin system may be impaired in Sudden Infant Death Syndrome (SIDS) cases. We addressed three hypotheses: 1) orexin provides a drive to breathe in infancy; 2) the effect of orexin depends on stage of postnatal development; and 3) orexin has a greater influence on breathing in wakefulness compared with sleep. Whole body plethysmography was used to monitor breathing of infant rats at three ages: postnatal days (P) 7-8, 12-14, and 17-19. Respiratory variables were analyzed in wakefulness (W), quiet sleep (QS), and active sleep (AS), following suvorexant (5 mg/kg ip), a dual orexin receptor antagonist, or vehicle (DMSO). Effects of suvorexant on ventilatory responses to graded hypercapnia ([Formula: see text] = 0.02, 0.04, 0.06), hypoxia ([Formula: see text] = 0.10), and hyperoxia ([Formula: see text] = 1.0) at P12-14 were also tested. At P12-14, but not at other ages, suvorexant significantly reduced respiratory frequency in all states, reduced the ventilatory equivalent in QW and QS, and increased [Formula: see text] to ∼5 mmHg. Suvorexant had no effect on ventilatory responses to graded hypercapnia or hypoxia. Hyperoxia eliminated the effects of suvorexant on respiratory frequency at P12-14. Our data suggest that orexin preserves eupneic frequency and ventilation in rats, specifically at ∼2 wk of age, perhaps by facilitating tonic peripheral chemoreflex activity.


Assuntos
Células Quimiorreceptoras/metabolismo , Pulmão/inervação , Orexinas/metabolismo , Ventilação Pulmonar , Reflexo , Mecânica Respiratória , Animais , Animais Recém-Nascidos , Azepinas/farmacologia , Células Quimiorreceptoras/efeitos dos fármacos , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Ventilação Pulmonar/efeitos dos fármacos , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Sono , Triazóis/farmacologia , Vigília
7.
Respir Physiol Neurobiol ; 294: 103742, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298167

RESUMO

Juxtapulmonary receptors (J) lying in the lung parenchyma are stimulated naturally by any condition that produces interstitial oedema, transient increases in interstitial volume and pressure or raised pulmonary capillary pressure. There is no information available about the level of their stimulation in patients with idiopathic pulmonary hypertension (IPH) who have high levels of pulmonary artery systolic pressures. The aim of the present study therefore was to find the level of these receptors activity in these patients at their prevailing pulmonary artery systolic pressures. This was done by the established method of determining the dose of i.v. lobeline that gives rise to threshold levels of sensations in the upper chest areas and accelerates respiration. In IPH patients it was found to be as high as 31.6 ± 5.6 µg/kg i.e., twice as much as that known for healthy individuals which is 15 µg/kg. This shows an enhanced stimulation of J receptors in IPH patients. Expectedly when pulmonary artery systolic pressure falls with pulmonary bed vasodilator medication given to IPH patients, a reduction in the natural stimulus of J receptors would also occur leading to a fall in their activity and hence that of the quantum of their reflexes of respiratory acceleration and inhibition of exercise. This finding provides the first insight of a neural mechanism that could be influenced to produce its effects when pulmonary artery systolic pressure falls by pulmonary vasodilator medication.


Assuntos
Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Lobelina/farmacologia , Pulmão/inervação , Medicamentos para o Sistema Respiratório/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Vasodilatadores/farmacologia , Adulto , Feminino , Humanos , Lobelina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Medicamentos para o Sistema Respiratório/administração & dosagem , Vasodilatadores/administração & dosagem
8.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R220-R227, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189947

RESUMO

Typically, unit discharge of slowly adapting receptors (SARs) declines slowly when lung inflation pressure is constant, although in some units it increases instead-a phenomenon hereinafter referred to as creeping. These studies characterize creeping behavior observed in 62 of 137 SAR units examined in anesthetized, open-chest, and mechanically ventilated rabbits. SAR units recorded from the cervical vagus nerve were studied during 4 s of constant lung inflation at 10, 20, and 30 cmH2O. Affected SAR units creep more quickly as inflation pressure increases. SAR units also often deactivate after creeping, i.e., their activity decreases or stops completely. Creeping likely results from encoder switching from a low discharge to a high discharge SAR, because it disappears in SAR units with multiple receptive fields after blocking a high discharge encoder in one field leaves low discharge encoders intact. The results support that encoder switching is a common mechanism operating in lung mechanosensory units.


Assuntos
Pulmão/inervação , Mecanotransdução Celular , Receptores Pulmonares de Alongamento/fisiologia , Respiração Artificial , Nervo Vago/fisiologia , Potenciais de Ação , Animais , Masculino , Pressão , Coelhos , Fatores de Tempo
9.
Elife ; 102021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34013884

RESUMO

Glutamatergic neurons in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors by regulating breathing in response to tissue CO2/H+. The RTN and greater parafacial region may also function as a chemosensing network composed of CO2/H+-sensitive excitatory and inhibitory synaptic interactions. In the context of disease, we showed that loss of inhibitory neural activity in a mouse model of Dravet syndrome disinhibited RTN chemoreceptors and destabilized breathing (Kuo et al., 2019). Despite this, contributions of parafacial inhibitory neurons to control of breathing are unknown, and synaptic properties of RTN neurons have not been characterized. Here, we show the parafacial region contains a limited diversity of inhibitory neurons including somatostatin (Sst)-, parvalbumin (Pvalb)-, and cholecystokinin (Cck)-expressing neurons. Of these, Sst-expressing interneurons appear uniquely inhibited by CO2/H+. We also show RTN chemoreceptors receive inhibitory input that is withdrawn in a CO2/H+-dependent manner, and chemogenetic suppression of Sst+ parafacial neurons, but not Pvalb+ or Cck+ neurons, increases baseline breathing. These results suggest Sst-expressing parafacial neurons contribute to RTN chemoreception and respiratory activity.


Assuntos
Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/metabolismo , Epilepsias Mioclônicas/metabolismo , Hidrogênio/metabolismo , Núcleos Intralaminares do Tálamo/metabolismo , Pulmão/inervação , Respiração , Somatostatina/metabolismo , Animais , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Ácido Glutâmico/metabolismo , Núcleos Intralaminares do Tálamo/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Inibição Neural , Somatostatina/genética , Transmissão Sináptica
10.
Anesth Analg ; 132(5): 1244-1253, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857966

RESUMO

Opioids are commonly used for pain management, perioperative procedures, and addiction treatment. There is a current opioid epidemic in North America that is paralleled by a marked increase in related deaths. Since 2000, chronic opioid users have been recognized to have significant central sleep apnea (CSA). After heart failure-related Cheyne-Stokes breathing (CSB), opioid-induced CSA is now the second most commonly seen CSA. It occurs in around 24% of chronic opioid users, typically after opioids have been used for more than 2 months, and usually corresponds in magnitude to opioid dose/plasma concentration. Opioid-induced CSA events often mix with episodes of ataxic breathing. The pathophysiology of opioid-induced CSA is based on dysfunction in respiratory rhythm generation and ventilatory chemoreflexes. Opioids have a paradoxical effect on different brain regions, which result in irregular respiratory rhythm. Regarding ventilatory chemoreflexes, chronic opioid use induces hypoxia that appears to stimulate an augmented hypoxic ventilatory response (high loop gain) and cause a narrow CO2 reserve, a combination that promotes respiratory instability. To date, no direct evidence has shown any major clinical consequence from CSA in chronic opioid users. A line of evidence suggested increased morbidity and mortality in overall chronic opioid users. CSA in chronic opioid users is likely to be a compensatory mechanism to avoid opioid injury and is potentially beneficial. The current treatments of CSA in chronic opioid users mainly focus on continuous positive airway pressure (CPAP) and adaptive servo-ventilation (ASV) or adding oxygen. ASV is more effective in reducing CSA events than CPAP. However, a recent ASV trial suggested an increased all-cause and cardiovascular mortality with the removal of CSA/CSB in cardiac failure patients. A major reason could be counteracting of a compensatory mechanism. No similar trial has been conducted for chronic opioid-related CSA. Future studies should focus on (1) investigating the phenotypes and genotypes of opioid-induced CSA that may have different clinical outcomes; (2) determining if CSA in chronic opioid users is beneficial or detrimental; and (3) assessing clinical consequences on different treatment options on opioid-induced CSA.


Assuntos
Analgésicos Opioides/efeitos adversos , Encéfalo/efeitos dos fármacos , Pulmão/inervação , Transtornos Relacionados ao Uso de Opioides/complicações , Respiração/efeitos dos fármacos , Apneia do Sono Tipo Central/induzido quimicamente , Encéfalo/fisiopatologia , Humanos , Transtornos Relacionados ao Uso de Opioides/mortalidade , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Prognóstico , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/fisiopatologia , Medição de Risco , Fatores de Risco , Apneia do Sono Tipo Central/mortalidade , Apneia do Sono Tipo Central/fisiopatologia
11.
Toxicol Appl Pharmacol ; 419: 115512, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33785355

RESUMO

Nerve agents are highly toxic organophosphorus compounds that inhibit acetylcholinesterase resulting in rapid accumulation of the neurotransmitter acetylcholine (ACh) causing a cholinergic syndrome including respiratory failure. In the present study, respiratory responses and antimuscarinic treatment efficacy was evaluated ex vivo using rat precision-cut lung slices (PCLS) exposed to the nerve agent VX. The respiratory effects were evaluated either by adding exogenous ACh directly to the culture medium or by applying electric-field stimulation (EFS) to the PCLS to achieve a release of endogenous ACh from neurons in the lung tissue. The airway contraction induced by both methods was enhanced by VX and resulted in lingering airway recovery, in particular when airways were exposed to a high VX-dose. Both contractions induced by EFS and exogenously added ACh were significantly reduced by administration of the antimuscarinic drugs atropine or scopolamine. Two additions of atropine or scopolamine after maximal ACh-induced airway response was demonstrated effective to reverse the contraction. By adding consecutive doubled doses of antimuscarinics, high efficiency to reduce the cholinergic airway response was observed. However, the airways were not completely recovered by atropine or scopolamine, indicating that non-muscarinic mechanisms were involved in the smooth muscle contractions. In conclusion, it was demonstrated that antimuscarinic treatment reversed airway contraction induced by VX but supplemental pharmacological interventions are needed to fully recover the airways. Further studies should therefore clarify the mechanisms of physiological responses in lung tissue following nerve agent exposures to improve the medical management of poisoned individuals.


Assuntos
Atropina/farmacologia , Fibras Colinérgicas/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Pulmão/inervação , Antagonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/inervação , Compostos Organotiofosforados/toxicidade , Escopolamina/farmacologia , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Fibras Colinérgicas/enzimologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Ratos Sprague-Dawley
12.
FASEB J ; 35(3): e21320, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660333

RESUMO

Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.


Assuntos
Inflamação/imunologia , Vírus da Influenza A , Pulmão/inervação , Infecções por Orthomyxoviridae/imunologia , Células Receptoras Sensoriais/imunologia , Nervo Vago/imunologia , Animais , Feminino , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/metabolismo , Transcrição Gênica , Nervo Vago/metabolismo
13.
BMC Cardiovasc Disord ; 21(1): 140, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731006

RESUMO

BACKGROUND: Sudden cardiac deaths are twice more frequent in diabetic patients with cardiac autonomic neuropathy. Sudden cardiac death etiologies remain unclear and no recommendations are made to identify factors associated with cardiorespiratory arrest in diabetic patients. We hypothesized, from two clinical cases, that impaired hypoxic ventilatory drive, induced by diabetic autonomic neuropathy, is a cause of misdiagnosed severe cardiac events. CASE PRESENTATION: We describe the cases of two patients with isolated low blood saturation on pulse oximeter during the systematic nurse check-up (77% and 85% respectively) contrasting with the absence of any complaint such as dyspnea, polypnea or other respiratory insufficiency signs observed during the clinical examination. Arterial blood gas measurements subsequently confirmed that blood oxygen saturation was low and both patients were indeed hypoxemic. Patient 1 suffered from vascular overload complicated by cardiac arrest caused by hypoxemia in light of the quick recovery observed after ventilation. Pulmonary edema was diagnosed in patient 2. The common denominator of these 2 cases described in this brief report is the absence of respiratory failure clinical signs contrasting with the presence of confirmed hypoxemia. Also, in both cases, such absence of precursory signs seems to be induced by an impaired ventilatory drive to hypoxemia. This appears to be related to the autonomic diabetic neuropathy encountered in those 2 patients. CONCLUSIONS: Therefore, we describe, in this brief report, cardiac autonomic neuropathy as a cause of impaired hypoxic ventilatory drive involved in severe acute cardiorespiratory events in two type 1 diabetic patients. We assume that altered response to hypoxemia due to cardiac autonomic neuropathy and non-functional central neurological breathing command could play a key role in sudden deaths among diabetic patients. An important point is that hypoxemia can be easily missed since no clinical signs of respiratory failure are reported in these two clinical cases. Systematic screening of cardiac autonomic neuropathy in diabetic patients and proactive detection of impaired hypoxic ventilatory drive for early management (e.g. treatment of hypoxemia) should be systematically undertaken in diabetic patients to prevent its dramatic consequences such as cardiorespiratory arrest and death.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Cardiopatias/etiologia , Coração/inervação , Hipóxia/etiologia , Pulmão/inervação , Ventilação Pulmonar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/terapia , Erros de Diagnóstico , Feminino , Cardiopatias/diagnóstico , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Hipóxia/diagnóstico , Hipóxia/fisiopatologia , Hipóxia/terapia , Pessoa de Meia-Idade , Valor Preditivo dos Testes
14.
Respir Res ; 22(1): 62, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608007

RESUMO

BACKGROUND: Targeted lung denervation (TLD) is a novel bronchoscopic therapy that disrupts parasympathetic pulmonary nerve input to the lung reducing clinical consequences of cholinergic hyperactivity. The AIRFLOW-1 study assessed safety and TLD dose in patients with moderate-to-severe, symptomatic COPD. This analysis evaluated the long-term impact of TLD on COPD exacerbations, pulmonary function, and quality of life over 3 years of follow up. METHODS: TLD was performed in a prospective, energy-level randomized (29 W vs 32 W power), multicenter study (NCT02058459). Additional patients were enrolled in an open label confirmation phase to confirm improved gastrointestinal safety after procedural modifications. Durability of TLD was evaluated at 1, 2, and 3 years post-treatment and assessed through analysis of COPD exacerbations, pulmonary lung function, and quality of life. RESULTS: Three-year follow-up data were available for 73.9% of patients (n = 34). The annualized rate of moderate to severe COPD exacerbations remained stable over the duration of the study. Lung function (FEV1, FVC, RV, and TLC) and quality of life (SGRQ-C and CAT) remained stable over 3 years of follow-up. No new gastrointestinal adverse events and no unexpected serious adverse events were observed. CONCLUSION: TLD in COPD patients demonstrated a positive safety profile out to 3 years, with no late-onset serious adverse events related to denervation therapy. Clinical stability in lung function, quality of life, and exacerbations were observed in TLD treated patients over 3 years of follow up.


Assuntos
Denervação/métodos , Volume Expiratório Forçado/fisiologia , Pulmão/inervação , Doença Pulmonar Obstrutiva Crônica/cirurgia , Qualidade de Vida , Broncoscopia , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Pulmão/diagnóstico por imagem , Masculino , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Tempo
15.
Neurosci Lett ; 748: 135719, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33587987

RESUMO

Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.


Assuntos
Vias Aferentes/fisiologia , Pulmão/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Humanos , Pulmão/inervação , Sistema Nervoso Periférico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
16.
Am J Physiol Heart Circ Physiol ; 320(4): H1498-H1509, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513085

RESUMO

Paraquat (PQT) herbicide is widely used in agricultural practices despite being highly toxic to humans. It has been proposed that PQT exposure may promote cardiorespiratory impairment. However, the physiological mechanisms involved in cardiorespiratory dysfunction following PQT exposure are poorly known. We aimed to determine the effects of PQT on ventilatory chemoreflex control, cardiac autonomic control, and cardiac function in rats. Male Sprague-Dawley rats received two injections/week of PQT (5 mg·kg-1 ip) for 4 wk. Cardiac function was assessed through echocardiography and pressure-volume loops. Ventilatory function was evaluated using whole body plethysmography. Autonomic control was indirectly evaluated by heart rate variability (HRV). Cardiac electrophysiology (EKG) and exercise capacity were also measured. Four weeks of PQT administration markedly enlarged the heart as evidenced by increases in ventricular volumes and induced cardiac diastolic dysfunction. Indeed, end-diastolic pressure was significantly higher in PQT rats compared with control (2.42 ± 0.90 vs. 4.01 ± 0.92 mmHg, PQT vs. control, P < 0.05). In addition, PQT significantly reduced both the hypercapnic and hypoxic ventilatory chemoreflex response and induced irregular breathing. Also, PQT induced autonomic imbalance and reductions in the amplitude of EKG waves. Finally, PQT administration impaired exercise capacity in rats as evidenced by a ∼2-fold decrease in times-to-fatigue compared with control rats. Our results showed that 4 wk of PQT treatment induces cardiorespiratory dysfunction in rats and suggests that repetitive exposure to PQT may induce harmful mid/long-term cardiovascular, respiratory, and cardiac consequences.NEW & NOREWORTHY Paraquat herbicide is still employed in agricultural practices in several countries. Here, we showed for the first time that 1 mo paraquat administration results in cardiac adverse remodeling, blunts ventilatory chemoreflex drive, and promotes irregular breathing at rest in previously healthy rats. In addition, paraquat exposure induced cardiac autonomic imbalance and cardiac electrophysiology alterations. Lastly, cardiac diastolic dysfunction was overt in rats following 1 mo of paraquat treatment.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Sistema Nervoso Autônomo/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Coração/inervação , Herbicidas/toxicidade , Hipertrofia Ventricular Esquerda/induzido quimicamente , Pulmão/inervação , Paraquat/toxicidade , Ventilação Pulmonar/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Células Quimiorreceptoras/metabolismo , Tolerância ao Exercício/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Ratos Sprague-Dawley , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
17.
Anesth Analg ; 133(3): 610-619, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497061

RESUMO

BACKGROUND: Residual neuromuscular blockade is associated with an increased incidence of postoperative respiratory complications. The REsidual neuromuscular block Prediction Score (REPS) identifies patients at high risk for residual neuromuscular blockade after surgery. METHODS: A total of 101,510 adults undergoing noncardiac surgery under general anesthesia from October 2005 to December 2018 at a tertiary care center in Massachusetts were analyzed for the primary outcome of postoperative respiratory complications (invasive mechanical ventilation requirement within 7 postoperative days or immediate postextubation desaturation [oxygen saturation {Spo2} <90%] within 10 minutes). The primary objective was to assess the association between the REPS and respiratory complications. The secondary objective was to compare REPS and train-of-four (TOF) ratio <0.90 on the strength of their association with respiratory complications. RESULTS: A high REPS (≥4) was associated with an increase in odds of respiratory complications (adjusted odds ratio [OR], 1.13 [95% confidence interval {CI}, 1.06-1.21]; P < .001). In 6224 cases with available TOF ratio measurements, a low TOF ratio (<0.9) was associated with respiratory complications (adjusted OR, 1.43 [95% CI, 1.11-1.85]; P = .006), whereas a high REPS was not (adjusted OR, 0.96 [95% CI, 0.74-1.23]; P = .73) (P = .018 for comparison between ORs). CONCLUSIONS: The REPS may be implemented as a screening tool to encourage clinicians to use quantitative neuromuscular monitoring in patients at risk of residual neuromuscular blockade. A positive REPS should be followed by a quantitative assessment of the TOF ratio.


Assuntos
Anestesia Geral , Regras de Decisão Clínica , Recuperação Demorada da Anestesia/etiologia , Pulmão/inervação , Bloqueio Neuromuscular/efeitos adversos , Monitoração Neuromuscular , Transtornos Respiratórios/etiologia , Respiração , Adulto , Idoso , Anestesia Geral/efeitos adversos , Recuperação Demorada da Anestesia/diagnóstico , Recuperação Demorada da Anestesia/fisiopatologia , Recuperação Demorada da Anestesia/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Transtornos Respiratórios/diagnóstico , Transtornos Respiratórios/fisiopatologia , Transtornos Respiratórios/terapia , Respiração Artificial , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo
18.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393489

RESUMO

Fibrosis is a macrophage-driven process of uncontrolled extracellular matrix accumulation. Neuronal guidance proteins such as netrin-1 promote inflammatory scarring. We found that macrophage-derived netrin-1 stimulates fibrosis through its neuronal guidance functions. In mice, fibrosis due to inhaled bleomycin engendered netrin-1-expressing macrophages and fibroblasts, remodeled adrenergic nerves, and augmented noradrenaline. Cell-specific knockout mice showed that collagen accumulation, fibrotic histology, and nerve-associated endpoints required netrin-1 of macrophage but not fibroblast origin. Adrenergic denervation; haploinsufficiency of netrin-1's receptor, deleted in colorectal carcinoma; and therapeutic α1 adrenoreceptor antagonism improved collagen content and histology. An idiopathic pulmonary fibrosis (IPF) lung microarray data set showed increased netrin-1 expression. IPF lung tissues were enriched for netrin-1+ macrophages and noradrenaline. A longitudinal IPF cohort showed improved survival in patients prescribed α1 adrenoreceptor blockade. This work showed that macrophages stimulate lung fibrosis via netrin-1-driven adrenergic processes and introduced α1 blockers as a potentially new fibrotic therapy.


Assuntos
Pulmão/inervação , Pulmão/metabolismo , Macrófagos/metabolismo , Netrina-1/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Feminino , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Netrina-1/genética , Norepinefrina/genética , Norepinefrina/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
19.
Eur J Appl Physiol ; 121(3): 915-927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389144

RESUMO

PURPOSE: Heart transplantation (HTx) implies denervation of afferent neural connections. Reinnervation of low-pressure cardiopulmonary baroreceptors might impact the development and treatment of hypertension, but little is known of its occurrence. The present prospective study investigated possible afferent reinnervation of low-pressure cardiopulmonary baroreceptors during the first year after heart transplantation. METHODS: A total of 50 heart transplant recipients (HTxRs) were included and were evaluated 7-12 weeks after transplant surgery, with follow-up 6 and 12 months later. In addition, a reference group of 50 healthy control subjects was examined once. Continuous, non-invasive recordings of cardiovascular variables were carried out at supine rest, during 15 min of 20° head-up tilt, during Valsalva maneuver and during 1 min of 30% maximal voluntary handgrip. In addition, routine clinical data including invasive measurements were used in the analyses. RESULTS: During the first year after HTx, the heart rate (HR) response to 20° head-up tilt partly normalized, a negative relationship between resting mean right atrial pressure and HR tilt response developed, low-frequency variability of the RR interval and systolic blood pressure at supine rest increased, and the total peripheral resistance response to Valsalva maneuver became stronger. CONCLUSION: Functional assessments suggest that afferent reinnervation of low-pressure cardiopulmonary receptors occurs during the first year after heart transplantation, partially restoring reflex-mediated responses to altered cardiac filling.


Assuntos
Sistema Cardiovascular/inervação , Força da Mão/fisiologia , Frequência Cardíaca/fisiologia , Transplante de Coração , Pulmão/inervação , Pressorreceptores/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
20.
Front Immunol ; 12: 785355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975876

RESUMO

The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.


Assuntos
Envelhecimento/imunologia , COVID-19/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Nociceptores/imunologia , SARS-CoV-2/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Idoso , COVID-19/virologia , Humanos , Pulmão/inervação , Pulmão/virologia , Nociceptores/metabolismo , Nociceptores/virologia , SARS-CoV-2/fisiologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Canais de Potencial de Receptor Transitório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...